Note

The structure of O-specific polysaccharide from Pseudomonas solanacearum ICMP 4157*

Nina A. Kocharova, Yuriy A. Knirel, Alexander S. Shashkov, Nikolay K. Kochetkov, N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow B-334 (U.S.S.R)

and Lyudmila D. Varbanets

D. K. Zabolotny Institute of Microbiology and Virology. Academy of Science of the Ukrainian S.S.R., Kiev (U.S.S.R.)

(Received July 10th, 1991; accepted August 20th, 1991)

Pseudomonas solanacearum is a phytopathogenic, gram-negative microorganism having many heterogeneous biological and biochemical properties¹⁻³. The structure of the O-antigen of the virulent strain P. solanacearum U-7 and its avirulent mutant M4S has been determined^{4,5} as that of a linear polysaccharide having a tetrasaccharide repeating-unit built up of one α -D-GlcpNAc and three α -L-Rhap residues. The same structure was established⁶ for O-specific polysaccharides from P. solanacearum strains PDDCC 7859, ICMP 8110, and ICMP 8202, whereas strain ICMP 5712 was shown⁶ to produce an O-antigen having a branched pentasaccharide repeating unit with a backbone consisting of one β -D-GlcpNAc and three α -L-Rhap residues, and a β -D-Xylp group attached as a side chain to one of the α -L-Rhap residues. We report, herein, the structure of the O-specific polysaccharide of P. solanacearum ICMP 4157.

The lipopolysaccharide of this strain was isolated from bacterial cells by the method of Westphal and Jann⁷ and cleaved with dilute acetic acid to give an O-specific polysaccharide, isolated by gel-permeation chromatography on Sephadex G-50.

Acid hydrolysis of the polysaccharide gave arabinose, 2-amino-2-deoxyglucose, and 2-amino-2-deoxygalactose which were identified by g.l.c. as alditol acetates. The D configuration of arabinose was determined by g.l.c. of the corresponding (S)-2-octyl glycoside according to the method of Leontein et al.⁸ The D configuration of the amino sugars was established by calculation of the specific optical rotation according to Klyne's rule (see below).

In the ¹H-n.m.r. spectrum of the polysaccharide (Table I), signals for three anomeric protons were present at δ 4.91 (d, $J_{1,2}$ 4 Hz), 5.03 (d, $J_{1,2}$ 4 Hz), and 5.08 (m, $J_{1,2}$ <4 Hz), for two NAc groups at δ 2.05 and 2.06, and for other protons in the region δ 3.5–4.3. The ¹³C-n.m.r. spectrum (Table II) also showed the presence of a polysaccha-

^{*} Dedicated to Professor Serge David on the occasion of his 70th birthday.

TABLE I 1 H-N.m.r. chemical shifts (δ) for the O-specific polysaccharide^a

H-1	Н-2	Н-3	H-4	H-5	Н-6
2-Acetam	ido-2-deoxy-α-1	o-glucopyranose	e (Unit A)		
4.91	3.94	3.94	3.67	3.94	3.66, 3.97
2-Acetam	ido-2-deoxy-α-1	o-galactopyrano	ose (Unit B)		
5.03	4.20	4.02	4.00	4.26	3.69 (2H)
β-D-Arab	inofuranose (Ui	nit C)			
5.08	4.12	4.15	3.88	3.73 (2H)	

^a Coupling constants J were not determined (exept for $J_{1,2}$ 4 Hz for units B and C) owing to multiple coincidences of the resonances for vicinal protons. Additional signals: NAc at δ 2.05 and 2.06 (both s.).

TABLE II

13C-N.m.r. chemical shifts $(\delta)^a$

Unit	C-1	C-2	C-3	C-4	C-5	C-6
O-Specific polysaccharide						
\rightarrow 6)- α -D-GlcpNAc-(1 \rightarrow (A)	99.3	55.1	73.2	79.7	70.1	67.3
4						
†						
\rightarrow 4)- α -D-GalpNAc-(1 \rightarrow (B)	99.4	51.6	68.4	78.5	71.7	61.6
β -D-Ara f -(1 \rightarrow (C)	103.0	77.6	74.2	82.8	62.2	
Smith-degraded polysaccharide ^b						
$\rightarrow 6$)- α -D-Glc p NAc-(1 \rightarrow (A)	99.2	54.9	72.1	70.9	71.4	66.5
	(98.9)	(55.3)	(72.0)	(71.4)	(71.5)	(66.9)
-4)- α -D-GalpNAc-(1 → (B)	98.1	51.0	68.3	78.3	72.5	61.2
·, · · · · · · · · · · · · · · · · · ·	(97.8)	(51.0)	(68.5)	(77.9)	(72.4)	(61.7)

^a Additional signals: NAc at δ 23.1–23.4 (CH₃), 175.7–176.0 (CO). ^b Values calculated by the method of Lipkind *et al.* ¹⁰ are given in parentheses.

ride having a trisaccharide repeating unit (signals for three anomeric carbon atoms at δ 99.3, 99.4, and 103.0), two of the components being acetamidodeoxy sugars [signals for two carbon atoms bearing a nitrogen atom at δ 51.6 and 55.1; and for two NAc groups at δ 23.1 and 23.4 (Me), and 175.7 and 175.9 (CO)]. The total number (17) of signals for sugar carbon atoms in the ¹³C-n.m.r. spectrum indicated that two of the constituent monosaccharides were hexose derivatives, and one was a pentose derivative. Therefore, the O-specific polysaccharide has a trisaccharide repeating unit consisting of residues of Ara, GlcNAc, and GalNAc.

The ¹H-n.m.r. spectrum of the polysaccharide was assigned with the help of 2D-homonuclear, shift-correlated spectroscopy in combination with single-relayed, coherence transfer spectroscopy (Table I). Uncertainty in several assignments, introduced by the coincidence of the proton resonances, was resolved by application of

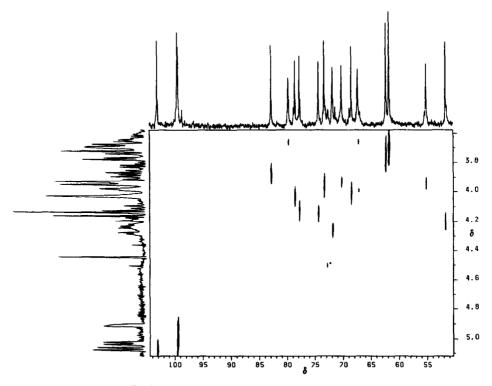


Fig. 1. 2D Heteronuclear 13 C- 1 H shift-correlated spectrum of O-specific polysaccharide of *P. solanacearum* ICMP 4157 (regions of F_2 , δ 110-45; and F_1 , δ 3-5.3). The respective 1D 13 C- and 1 H-n.m.r. spectra are displayed along the F_2 and F_1 axes, respectively. The signals for the NAc groups, folded within the spectral window, are marked with an asterisk.

heteronuclear ¹³C-¹H shift-correlated spectroscopy (Fig. 1). This also allowed us to assign the signals in the ¹³C-n.m.r. spectrum of the polymer (Table II).

The monosaccharide residues were arbitrarily designated as units A, B, and C in order of increasing chemical shift values for the corresponding anomeric protons and carbon atoms. The positions at δ 55.1 and 51.6 of the signals for C-2 of units A and B indicated^{9,10} that these units were the GlcpNAc and GalpNAc residues, respectively, and, hence, unit C was the Ara residue. The $J_{1,2}$ value of \leq 4 Hz indicated that the residues of both amino sugars have the α -D configuration. The ¹³C-chemical shifts for unit C (Table II) proved⁹ that the Ara unit has a β -D-furanose structure and is unsubstituted. As judged by the relatively low-field positions at δ 79.7 and 78.5 of the signals for C-4, units A and B are 4-substituted. Analogously, a relatively low-field position at δ 67.3 of the signal for C-6 of one of the HexNAc residues was indicative of 6-substitution of unit A or B.

On irradiation of the H-1 of unit A at δ 4.91, together with n.O.e.'s on H-2 and, due to spin diffusion, H-3,4 of the same unit at δ 3.94 and 3.67, a significant n.O.e. was observed for H-4 of unit B at δ 4.00. This indicated that units A and B are connected by a

 $(1\rightarrow 4)$ - α -D-linkage. N.O.e. patterns arisen on irradiation of H-1 of units B and C at δ 5.03 and 5.08, respectively, did not allow an unambiguous interpretation.

The O-specific polysaccharide was subjected to Smith degradation to give a polymeric product which, judging from its ¹³C-n.m.r. spectrum (Table II), consisted of the GlcNAc and GalNAc residues. In order to determine the structure of the Smith-degraded polysaccharide, the computer-assisted, ¹³C-n.m.r.-based method of Lipkind *et al.* ¹⁰ was applied. This method involves the evaluation of the spectra for all possible structures of a polysaccharide with the given monosaccharide composition and a search for the structure having the best fit of calculated and experimental spectra. The analysis was performed with the assumption that, usually in bacterial polysaccharides both amino sugars have the D configuration. It revealed only one structure, namely 1, which was characterized by a relatively small sum of squared deviations of chemical shifts in the calculated and experimental spectra (S = 0.6 per sugar residue). All other possible structures had S values of not less than 2.5 and were, thus, inconsistent with the experimental spectrum.

→6)-
$$\alpha$$
-D-GlcpNAc-(1→4)- α -D-GalpNAc-(1→
A B

The absolute configurations of the amino sugars were confirmed by calculation of the specific optical rotation value of the Smith-degraded polysaccharide according to Klyne's rule¹¹. Only the calculation based on the assumption that both of them were D led to a value of $[\alpha]_D$ close to the experimental value (Table III).

TABLE III
Optical rotation data

Compound	[a] _p a (degrees)	M _r	[M] _D (degrees)	Ref.
α-D-GlcpNAcOMe	+ 187	235	+ 439	12
α-D-GalpNAcOMe	+ 130	235	+ 305	13
Smith-degraded polysaccharide				
Calculated for				
D-GlcNAc, D-GalNAc	+ 183	406	+ 744	
L-GlcNAc, L-GalNAc	- 183	406	- 744	
D-GlcNAc, L-GalNAc	+ 33	406	+ 134	
L-GlcNAc, D-GalNAc	- 33	406	- 134	
Observed	+ 233			

^a For an aqueous solution.

Structure 1 was in accord with the ¹³C-n.m.r. and n.O.e. data given above and allowed us to conclude that, in the original polysaccharide, the lateral Ara group was attached to O-4 of unit A. Therefore, the O-specific polysaccharide of *P. solanacearum* ICMP 4157 has the structure 2.

$$β$$
-D-Araf C

1

↓

4

→6)-α-D-GlcpNAc-(1→4)-α-D-GalpNAc-(1→

A

B

In sugar composition, this polysaccharide differs significantly from O-antigens of *P. solanacearum* strains studied earlier^{4,6,14}. It is noteworthy that it contains D-arabinose, which occurs rarely in bacterial lipopolysaccharides. To our knowledge, hitherto D-arabinofuranose has been found¹⁵ only as a component of the O-specific polysaccharide of *Pseudomonas maltophilia* NCIB 9204.

EXPERIMENTAL

General methods. — Optical rotations were measured with a Jasco DIP 360 polarimeter at 25°. Solutions were freeze-dried or evaporated in vacuo at 40°. 1 H-N.m.r. spectra were recorded with a Bruker WM-250 spectrometer for solutions in $D_{2}O$ at 60° (internal reference, acetone, δ 2.23). 13 C-N.m.r. spectra were recorded with a Bruker AM-300 spectrometer for solutions in $D_{2}O$ at 60° (internal reference, acetone, δ 31.45). The standard Bruker software was used to obtain 2D homonuclear (COSY and COSYRCT) and heteronuclear 13 C- 1 H (XHCORRD) shift-correlated spectra (for details, see ref. 16). G.l.c. was performed with a Hewlett-Packard 5890 instrument, equipped with a flame-ionization detector and a glass capillary column (0.2 mm × 25 m), coated with Ultra 1 stationary phase. Gel-permeation chromatography was performed, in a column (70 × 3 cm) of Sephadex G-50, with a pyridine acetate buffer (pH 5.5) and monitoring by the orcinol- $H_{2}SO_{4}$ reaction, or in a column (80 × 1.6 cm) of TSK HW 40 (S) in water with monitoring by a Knauer differential refractometer.

Growth of bacteria and isolation of lipopolysaccharide and O-specific polysaccharide. — The strain of P. solanacearum ICMP 4157 was grown, for 36–40 h at 28°, on a synthetic medium N (ref. 17) on a rotatory shaker. Cells were centrifuged off and dried by treatment with acetone and ether.

The lipopolysaccharide was isolated by a standard procedure⁷ of phenol-water extraction, followed by removal of nucleic acid by precipitation with Cetavlon and ultracentrifugation at 144 000 g. It was cleaved by hydrolysis with 1% acetic acid for 1.5 h at 100°, a lipid residue was removed by centrifugation, and the O-specific polysaccharide was isolated from the supernatant by gel-permeation chromatography on Sephadex G-50.

Acid hydrolysis. — The O-specific polysaccharide (5 mg) was hydrolyzed in a sealed ampoule with 2M trifluoroacetic acid (2 h, 121°). After evaporation, a part of the hydrolyzate was reduced with NaBH₄ in water, conventionally acetylated, and analyzed by g.l.c. A second part was treated with KU-2 (H⁺) cation-exchange resin in water to

remove amino sugars, the solution was evaporated, and the residue was heated (16 h, 130°) with (S)-2-octanol (0.3 mL) in the presence of a drop of trifluoroacetic acid, acetylated, and analyzed by g.l.c.

Smith degradation. — The O-specific polysaccharide (30 mg) was oxidized with 0.1m NaIO_4 (1.5 mL) for 24 h at room temperature in the dark, the product was reduced with an excess (30 mg) of NaBH₄, desalted by gel-permeation chromatography on TSK HW 40, and hydrolyzed with aq. 1% acetic acid (2 h, 100°) to give the degraded polysaccharide (16 mg), $[\alpha]_D + 233^\circ$ (c 2), which was isolated by gel-permeation chromatography on TSK HW 40.

REFERENCES

- 1 A. Hayward, J. Appl. Bacteriol., 27 (1964) 265-277.
- 2 N. Okabe and M. Goto, Shizuoka Diagaku Nogakubu Kenkyn Hokoku, 11 (1961) 25-42.
- 3 N. Palleroni and M. Doudoroff, J. Bacteriol., 107 (1971) 690-696.
- 4 Y. Akiyama, S. Eda, K. Kato, and H. Tanaka, Carbohydr. Res., 133 (1984) 289-296.
- 5 Y. Akiyama, S. Nishikawaji, S. Eda, H. Tanaka, A. Ohnishi, and K. Kato, Agric. Biol. Chem., 49 (1985) 1193-1194.
- 6 L. D. Varbanets, N. A. Kocharova, Y. A. Knirel, V. A. Muras, N. V. Moskalenko, and O. S. Brovarskaya, Mikrobiol. Zh., 52 (1990) 27-33.
- 7 O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-91.
- 8 K. Leontein, B. Lindberg, and J. Lönngren, Carbohydr. Res., 62 (1978) 359-362.
- 9 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-65.
- 10 G. M. Lipkind, A. S. Shashkov, Y. A. Knirel, E. V. Vinogradov, and N. K. Kochetkov, Carbohydr. Res., 175 (1988) 59-75.
- 11 W. Klyne, Biochem. J., 46 (1950) xli-xlii.
- 12 H. Masamunc, M. Maka, and N. Hijama, Tohoku. J. Exp. Med., 54 (1951) 313-317.
- 13 W. Roth and W. Pigman, J. Am. Chem. Soc., 82 (1960) 4608-4610.
- 14 C. Y. Baker, L. Neilson, and G. Keegatra, Appl. Environ, Microbiol., 47 (1984) 1096-1100.
- 15 S. G. Wilkinson, L. Galbraith, and W. J. Anderton, Carbohydr. Res., 112 (1983) 244-252.
- 16 A. S. Shashkov, E. V. Vinogradov, E. D. Daeva, Y. A. Knirel, G. M. Zdorovenko, N. Y. Gubanova, L. M. Yakovleva, and I. Y. Zakharova, Carbohydr. Res., 212 (191) 301-305.
- 17 A. Vidaver, Appl. Microbiol., 15 (1967) 1523-1524.